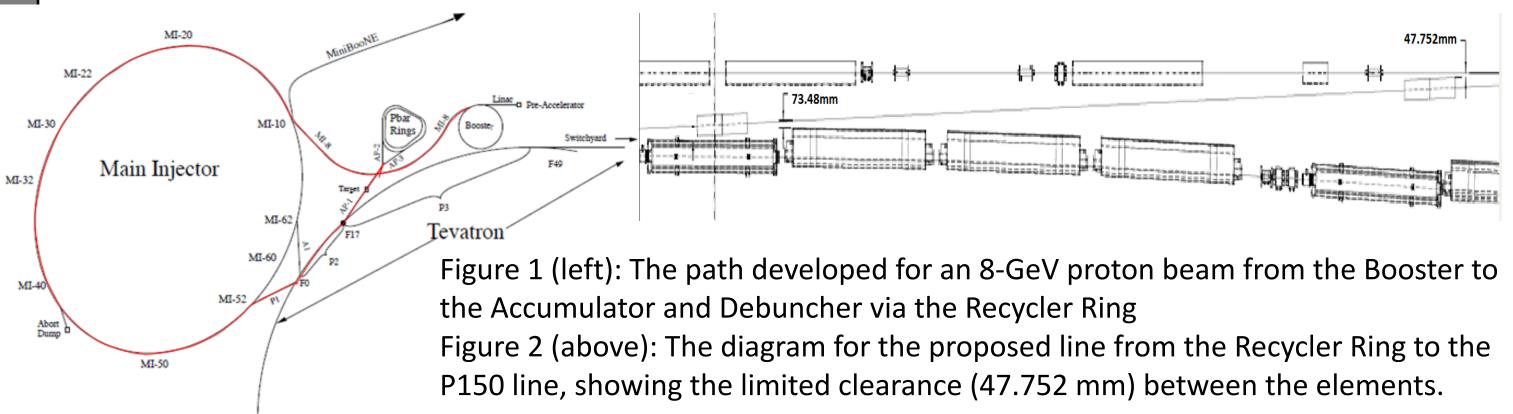
Transfer line design from Recycler Ring to the P150 line for the Mu2e- project at Fermi National Accelerator Laboratory

ABSTRACT


The ongoing Mu2e- project requires that 8-GeV protons be transferred from the Booster to the Antiproton source (Pbar). Described is a solution to achieve this via a transfer line between the recycler ring and the P150 line, which negates the need for new civil construction. The original design, created by Meiqin Xiao, faced engineering difficulties due to the interferences between the designed magnets in the transfer line and the beam pipe on the existing recycler ring as well as the magnet in the P150 line. This project remedied the problem by decreasing the distances between the elements of the FODO-cell, allowing for sufficient space between the magnetic elements. Once implemented with the revised design, the line will enable the antiproton source to become a set of proton storage rings to be used in the Mu2e- project.

ACKNOWLEDGEMENTS

I would like to acknowledge my mentor, Dr. Meiqin Xiao, for advising me throughout the investigation. She offered me resources from which to study and learn, constantly took time to answer my questions with detailed explanations, and offered me the opportunity to work on her current project. I would like to thank Dr. Jamie You, who played a key role in the investigation process by introducing me to Dr. Xiao. I would like to acknowledge Dr. Judith Scheppler and Dr. Mark Carlson for taking their time and effort to ensure that I could pursue this investigation at Fermilab. Additionally, they reviewed many of my documents to ensure they held up to the high standards of the scientific community. I acknowledge and thank Fermilab staff, for allowing me to pursue this investigation via the use of Fermilab workstations, software, and other resources.

INTRODUCTION

- With CERN's Large Hadron Collider, the Tevatron will cease to be useful to scientists.
- Research with high intensity proton beams will play a key role in Fermilab's physics program
- Ankenbrandt, Harding, Johnson, McGinnis, and Popovic (2007) planned to guide an 8-GeV proton beam from the Booster to the Accumulator/Debuncher via the Recycler ring (Figure 1).
- A previous design by Xiao (2010) described a solution to transport the proton beam from the Recycler Ring to the antiproton source, by building a transfer line between the Recycler Ring and the P150 (RR2P150) line, as shown in the diagram (Figure 2).
- This design did not offer sufficient clearance between the elements of the line, which necessitated a redesign of the transfer line.

Shantanu Jain **Illinois Mathematics and Science Academy** Meigin Xaio, PhD Fermi National Accelerator Laboratory

FOCUSING QUESTION

The SIR seeks to investigate and understand the basic concepts and theories of particle accelerator technology and physics, with a focus on linear beam dynamics, and its applications in transfer line design from the Recycler ring to the P150 line for Mu2e project.

METHODS

•The proposed transfer line is a FODO cell that successfully transforms the initial lattice function to the final lattice function.

• The FODO cell maintains its effect if its elements are moved in tandem. •The two magnet pairs - Q901 and Q902 – are the main components of the FODO cell (Figure 3, Table 2).

• To maintain the focusing effect of the FODO cell, Q901 was moved downstream by a distance of delta L meters, and Q902 was moved upstream by a distance of delta L meters.

•The MAD program was used to match the initial lattice functions, at Q522B, with the lattice functions required at the end of the line, at Q703.

•When using MAD's VARY command, the field strength of the magnets are calculated based on the constraints. We used α and β matching, as these are the most important parameters.

• The best delta L value was decided on based on the deviation from the lattice functions (delta L = 0m values). The solution was required to 0.6 π emittance growth

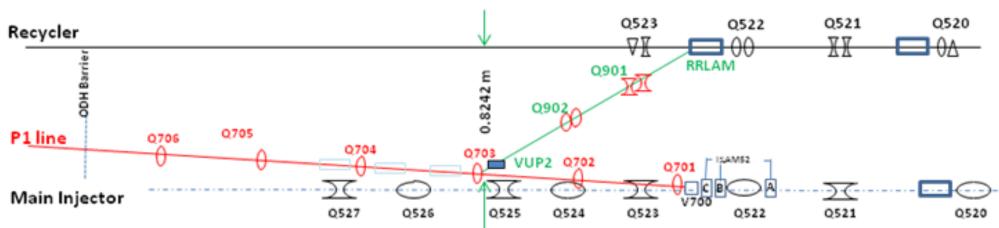
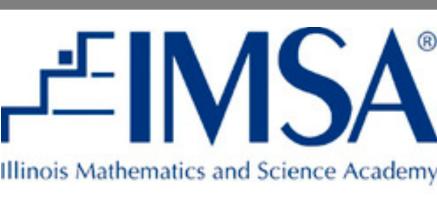



Figure 3. A diagram of the current plan for the RR2P150 transfer line, including existing infrastructure. The line is contains a FODO-cell, with the first magnet pair, Q901, being defocusing elements, and the second magne pair, Q902, being focusing elements. Element Q703 is the injection point, at which the transfer is complete (Xiao, 2010).

	M RRLAM	Marker
	DRRLAM1	Drift
	RRLAMUS	Marker
	LAMEND	Drift
	MRKRRLAM	Marker
		IVIAI KEI
	LAMEND	Drift
	RRLAMDS	Marker
	DRRLAM2	Drift
	QEND	Drift
	Q901A1	Quadrupole
	QEND	Drift
	QEND	Drift
	Q901A2	Quadrupole
	QEND	Drift
	DSS01	Drift
	MRK901	Marker
	DSS1	Drift
	QEND	Drift
	Q902A1	Quadrupole
	QEND	Drift
	QEND	Drift
	Q902A2	Quadrupole
	QEND	Drift
	DSS11	Drift
	MRK902	Marker
	D902VUP2	Drift
	VUP2	r-bend
	D902VUP2	Drift
	MQ703BE	Marker
	Q84U_END	Drift
	M_Q703	Marker
	Q703	Quadrupole
	Q84D_END	Drift
	DQ703Q70	Drift
	Q84U_END	Drift
	M_Q704	Marker
	Q704	Quadrupole
	Q84D_END	Drift
	DQ704Q70	Drift
	Q84U_END	Drift
	M_Q705	Marker
	Q705	Quadrupole
	Q84D_END	Drift
	DQ705Q70	Drift
	Q84U_END	Drift
	M_Q706	Marker
	 Q706	Quadrupole
	Q84D_END	Drift
eq	uential list of e	elements
	O line as specif	ind in the

oszo Table 1. Se the RR2P150 line as specified in the lattice file. The RR2P150 transfer line begins at RRAMO and ends at Q703.The lengths of the highlighted elements were adjusted as the experimental variables.

RESULTS AND DISCUSSION

- $\Delta L = 0.25$ m is the best solution
- Allowed sufficient space: 80.68r
- Created a solution using existing a crowded location
- Redesigned without affecting tl parts of the project
- No new civil construction required

	∆L = 0m		1L = 0.25m	۵۱	_ = 0.50m		∆L = 0.75m		∆L = 0m	∆L = 0.25m		∆L = 0.50m		∆L = 0.75m	
	Control	Matched	Percent difference	Matched	Percent difference	Matched	Percent difference		Control	Matched	Percent difference	Matched	Percent difference	Matched	Percent difference
<mark>₿x</mark> .	11.115	12.11	-8.952	13.826	-24.390	17.541	-57.814	βx	11.115	11.115	0.000	11.115	0.000	11.115	0.000
αx	0.618	0.618	0.000	0.618	0.000	0.618	0.000	αχ	0.618	0.604	2.265	0.568	8.091	0.526	14.887
βx	66.278	64.513	2.663	63.032	4.898	61.503	7.205	<u>By</u>	66.278	66.278	0.000	66.278	0.000	66.278	0.000
αχ	-2.915	-2.915	0.000	-2.915	0.000	-2.915	0.000	αγ	-2.915	-3.028	-3.877	-3.094	-6.141	-3.145	-7.890
ШX	0.75	0.243	67.600	0.239	68.133	0.231	69.200	ЩХ	0.75	0.246	67.200	0.251	66.533	0.256	65.867
₩Х	0.75	0.34	54.667	0	100.000	0.371	50.533	НХ	0.75	0.344	54.133	0.357	52.400	0.367	51.067
Dx	0.013	0.108	N/A	0.115	N/A	0.129	N/A	Dx	0.013	0.103	N/A	0.103	N/A	0.102	N/A
Dpx	0.001	-0.005	N/A	-0.004	N/A	-0.003	N/A	Dpx	0.001	-0.005	N/A	-0.005	N/A	-0.005	N/A
Ωx	-0.043	0.615	N/A	0.575	N/A	0.527	N/A	Dy	-0.043	0.616	N/A	0.568	N/A	0.559	N/A
Dpy	0.007	0.004	N/A	0.002	N/A	-0.001	N/A	Дру	0.007	0.004	N/A	0.003	N/A	0.001	N/A

Table 2. Tables of alpha (left) and beta (right) matched values. Each match occurs for three values of △L, including 0.25m, 0.5m, and 0.75m. $\Delta L = 0$ is the control, as it defines the ideal values of the beam, under the current plan (Xiao, M., personal communication, August 11th, 2010). The "matched" column indicates the beam's values at the injection point, Q703. Dx, Dpx, Dy, and Dpy's percent differences are not included in the table because the range for this value is absolute, and thus its change from the original $\Delta L = 0$ is not important.

REFERENCES

- Publishing Company
- Laboratory internal document.
- York: Springer-Verlag.
- Laboratory internal document.

Finis Mathematics and Science Academy

n obtained 3mm (Table 2).	△L()	Gained space (mm)	Total space (mm)		
ng magnets in	0	0.000	47.752		
18 ma 8 ma 8 m	0.25	32.886	47.732 80.638		
the other	0.5	65.771	113.523		
	0.75	98.657	146.409		
irad	1	131.542	179.294		

Table 2. Table displaying space gained between the recycler ring and the RR2P150 transfer line. $\triangle L$ is the distance in meters that the first magnet pair Q901 is moved downstream, and the second magnet pair Q902 is moved upstream.

Ankenbrandt, C., Harding, D., Johnson, D., McGinnis, D., & Popovic, M. (3/6/2007). Delivering protons to the antiproton source after the Tevatron collider era. Fermi National Accelerator Laboratory internal document. Conte, M., & Mackay, W. M. (1992). Introduction to the physics of particle accelerators. Sassari: World Scientific

Johnson, D.E., & Xiao, M. (2007). The conceptual design of a new transfer line from booster to recycler for the Fermilab proton plan phase 2 campaign. Proceedings of PAC07, Albuquerque, New Mexico, USA. Retrieved from http://pac07.org/proceedings/HTML/AUTH1508.HTM (accessed 8/22/2010)

Johnson, D.E. & Xiao, M. (5/25/2010). Transfer line from RR to P1 line for Mu2e project. Fermi National Accelerator

Wiedemann, H. (1999). Particle accelerator physics I: Basic principles and linear beam dynamics (vol. 1) (2nd ed.). New

Xiao, M. (2010). Transfer line from RR to P1 line for Mu2e project [PowerPoint slides]. Fermi National Accelerator